Skip to main content
Log in

578 nm clock laser system for ytterbium quantum gas experiments

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Ultra-narrow clock transition of ytterbium atoms has enabled not only quantum metrology but also quantum simulation of various quantum phenomena. One of such examples is a new possibility of realizing dissipative open quantum systems with minimal heating by optical pumping through the clock transition. Nevertheless, the access to the clock transition and relevant optical pumping often requires a complex laser system. Here we delineate a simple design and characterization of a home-made clock laser system that is capable of driving ytterbium clock transition at 578 nm. A fundamental laser at 1156 nm based on a quantum dot gain chip in a long external cavity configuration seeds the standard bow-tie cavity and generates up to 45 mW power of frequency-doubled yellow light at 578 nm. We have stabilized the laser frequency to a high-finesse ULE (ultra-low expansion) cavity via electronic feedback to the current. We examine the atomic spectroscopy at the clock transition in fermionic \(^{173}\)Yb atoms, which would allow us to implement controlled dissipation with minimal heating. With the clock laser system built in this work, we envision exploring non-Hermitian physics in various platforms including spin-orbit-coupled fermions and topological bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Kurosu, F. Shimizu, Laser cooling and trapping of calcium and strontium. Jpn. J. Appl. Phys. 29(11A), L2127 (1990)

    Article  ADS  Google Scholar 

  2. K.R. Vogel, T.P. Dinneen, A. Gallagher, J.L. Hall, Narrow-line doppler cooling of strontium to the recoil limit. IEEE Trans. Instrum. Meas. 48(2), 618–621 (1999)

    Article  Google Scholar 

  3. H. Katori, Optical lattice clocks and quantum metrology. Nat. Photonics 5(4), 203–210 (2011)

    Article  ADS  Google Scholar 

  4. P. Lemonde, Optical lattice clocks. Eur. Phys. J. Spec. Top. 172(1), 81–96 (2009)

    Article  Google Scholar 

  5. A.J. Daley, M.M. Boyd, J. Ye, P. Zoller, Quantum computing with alkaline-earth-metal atoms. Phys. Rev. Lett. 101(17), 170504 (2008)

    Article  ADS  Google Scholar 

  6. A.J. Daley, Quantum computing and quantum simulation with group-ii atoms. Quantum Inf. Process. 10(6), 865–884 (2011)

    Article  Google Scholar 

  7. C. He, E. Hajiyev, Z. Ren, B. Song, G.-B. Jo, Recent progresses of ultracold two-electron atoms. J. Phys. B At. Mol. Opt. Phys. 52(10), 102001 (2019)

    Article  ADS  Google Scholar 

  8. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Optical atomic clocks. Rev. Mod. Phys. 87(2), 637–701 (2015)

    Article  ADS  Google Scholar 

  9. G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J. Catani, M. Inguscio, L. Fallani, Strongly interacting gas of two-electron fermions at an orbital feshbach resonance. Phys. Rev. Lett. 115(26), 265301 (2015)

    Article  ADS  Google Scholar 

  10. J. Li, A.K. Harter, J. Liu, L. de Melo, Y.N. Joglekar, L. Luo, Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun. 10(1), 855 (2019)

    Article  ADS  Google Scholar 

  11. Y. Takasu, T. Yagami, Y. Ashida, R. Hamazaki, Y. Kuno, Y. Takahashi, PT-symmetric non-Hermitian quantum many-body system using ultracold atoms in an optical lattice with controlled dissipation. Progr. Theor. Exp. Phys. 2020(12), ptaa094 (2020)

    Article  MathSciNet  Google Scholar 

  12. Z. Ren, D. Liu, E. Zhao, C. He, K.K. Pak, J. Li, G.-B. Jo, Topological control of quantum states in non-Hermitian spin-orbit-coupled fermions. arXiv:2106:04874 (2021)

  13. C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, L. Hollberg, Observation and absolute frequency measurements of the s 0 1- p 0 3 optical clock transition in neutral ytterbium. Phys. Rev. Lett. 95(8), 083003 (2005)

    Article  ADS  Google Scholar 

  14. H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, F.-L. Hong, Spectroscopy of 171 yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb. Opt. Express 21(7), 7891–7896 (2013)

    Article  ADS  Google Scholar 

  15. A. Yu Nevsky, U. Bressel, I. Ernsting, M. Ch Eisele, S.S. Okhapkin, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov et al., A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges. Appl. Phys. B 92(4), 501–507 (2008)

    Article  ADS  Google Scholar 

  16. W.-K. Lee, C.Y. Park, D.-H. Yu, S.E. Park, S.-B. Lee, T.Y. Kwon, Generation of 578-nm yellow light over 10 mw by second harmonic generation of an 1156-nm external-cavity diode laser. Opt. Express 19(18), 17453–17461 (2011)

    Article  ADS  Google Scholar 

  17. G. Cappellini, P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani, J. Catani, A compact ultranarrow high-power laser system for experiments with 578 nm ytterbium clock transition. Rev. Sci. Instrum. 86(7), 073111 (2015)

    Article  ADS  Google Scholar 

  18. Y. Takata, S. Nakajima, J. Kobayashi, K. Ono, Y. Amano, Y. Takahashi, Current-feedback-stabilized laser system for quantum simulation experiments using yb clock transition at 578 nm. Rev. Sci. Instrum. 90(8), 083002 (2019)

    Article  ADS  Google Scholar 

  19. G. Di Domenico, S. Schilt, P. Thomann, Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 49(25), 4801–4807 (2010)

    Article  ADS  Google Scholar 

  20. F. Riehle, Frequency Standards: Basics and Applications (Wiley, New York, 2006)

    Google Scholar 

  21. G.D. Boyd, D.A. Kleinman, Parametric interaction of focused gaussian light beams. J. Appl. Phys. 39(8), 3597–3639 (1968)

    Article  ADS  Google Scholar 

  22. R.L. Targat, J.-J. Zondy, P. Lemonde, 75%-efficiency blue generation from an intracavity ppktp frequency doubler. Opt. Commun. 247(4–6), 471–481 (2005)

    Article  ADS  Google Scholar 

  23. A. Ashkin, G. Boyd, J. Dziedzic, Resonant optical second harmonic generation and mixing. IEEE J. Quantum Electron. 2(6), 109–124 (1966)

    Article  ADS  Google Scholar 

  24. E.D. Black, An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69(1), 79–87 (2001)

    Article  ADS  Google Scholar 

  25. N. Ismail, C.C. Kores, D. Geskus, M. Pollnau, Fabry-pérot resonator: spectral line shapes, generic and related airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity. Opt. Express 24(15), 16366–16389 (2016)

    Article  ADS  Google Scholar 

  26. G. Rempe, R.J. Thompson, H.J. Kimble, R. Lalezari, Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17(5), 363–365 (1992)

    Article  ADS  Google Scholar 

  27. F. Bondu, O. Debieu, Accurate measurement method of Fabry–Perot cavity parameters via optical transfer function. Appl. Opt. 46(14), 2611–2614 (2007)

    Article  ADS  Google Scholar 

  28. N. Uehara, K. Ueda, Accurate measurement of ultralow loss in a high-finesse Fabry–Perot interferometer using the frequency response functions. Appl. Phys. B 61(1), 9–15 (1995)

    Article  ADS  Google Scholar 

  29. C.R. Locke, D. Stuart, E.N. Ivanov, A.N. Luiten, A simple technique for accurate and complete characterisation of a Fabry–Perot cavity. Opt. Express 17(24), 21935–21943 (2009)

    Article  ADS  Google Scholar 

  30. G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, T. Zhang, Precision measurement of ultralow losses of an asymmetric optical microcavity. Appl. Opt. 45(29), 7628–7631 (2006)

    Article  ADS  Google Scholar 

  31. B. Song, C. He, S. Zhang, E. Hajiyev, W. Huang, X.-J. Liu, G.-B. Jo, Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms. Phys. Rev. A 94(6), 061604 (2016)

    Article  ADS  Google Scholar 

  32. B. Song, Y. Zou, S. Zhang, C. Cho, G.-B. Jo, A cost-effective high-flux source of cold ytterbium atoms. Appl. Phys. B 122(1), 250 (2016)

    Article  ADS  Google Scholar 

  33. V.A. Dzuba, A. Derevianko, Dynamic polarizabilities and related properties of clock states of the ytterbium atom. J. Phys. B At. 43(7), 074011 (2010)

    Article  ADS  Google Scholar 

  34. B. Song, L. Zhang, C. He, T.F.J. Poon, E. Hajiyev, S. Zhang, X.-J. Liu, G.-B. Jo, Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv. 4(2), eaao4748 (2018)

    Article  ADS  Google Scholar 

  35. B. Song, C. He, S. Niu, L. Zhang, Z. Ren, X.-J. Liu, G.-B. Jo, Observation of nodal-line semimetal with ultracold fermions in an optical lattice. Nat. Phys. 15(9), 911–916 (2019)

    Article  Google Scholar 

  36. M. Hfer, L. Riegger, F. Scazza, C. Hofrichter, D.R. Fernandes, M.M. Parish, J. Levinsen, I. Bloch, S. Flling, Observation of an orbital interaction-induced Feshbach resonance in Yb 173. Phys. Rev. Lett. 115(26), 265302 (2015)

    Article  ADS  Google Scholar 

  37. G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J. Catani, M. Inguscio, L. Fallani, Strongly interacting gas of two-electron fermions at an orbital Feshbach resonance. Phys. Rev. Lett. 115(26), 265301 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.-B.J. acknowledges supports from the RGC, the Croucher Foundation and the Hari Harilela foundation (project 16305317, 16304918, 16308118, 16306119,16302420, C6005-17G, C6009-20G and N-HKUST601/17). G.-B.J. also acknowledges supports from the Guangdong-Hong Kong Joint Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyu-Boong Jo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiyev, E., Pak, K.K., He, C. et al. 578 nm clock laser system for ytterbium quantum gas experiments. J. Korean Phys. Soc. 79, 930–936 (2021). https://doi.org/10.1007/s40042-021-00322-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00322-9

Keywords

Navigation